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Abstract
Dynamical systems of gauge glass are investigated by the method of gauge
transformation. Both stochastic and deterministic dynamics are treated.
Several exact relations are derived from dynamical quantities such as
equilibrium and nonequilibrium auto-correlation functions, relaxation
functions of order parameter and internal energy. They provide physical
properties in terms of dynamics in the SG phase, a possible mixed phase
and the Griffiths phase, the multicritical dynamics and the aging phenomenon.
We also have a plausible argument for the absence of re-entrant transition in
two or higher dimensions.

PACS numbers: 75.10.Nr, 74.81.Fa, 05.10.Gg, 05.20.Dd

1. Introduction

The physics of disordered systems has been one of most fascinating subjects for theorists
and experimentalists. The gauge glass is a typical example in this category and has attracted
much attention. The model describes thermodynamics of various systems such as disordered
magnets with random Dzyaloshinskii–Moriya interaction [1], Josephson junction arrays with
positional disorder in a magnetic field [2], vortex glasses [3] and crystal systems on disordered
substrates [4]. In three dimensions, the spin glass (SG) transition1 for a strongly disordered
regime has been confirmed in the gauge glass systems by numerical simulations [5–13]
and renormalization group (RG) analyses [14, 15], which is consistent with experimental
observations [16–18].

In two dimensions, there is a controversy about the existence of a glass-like phase
in a strongly disordered regime. Although the long-range SG order is denied in two
dimensions [19], there is a possibility of a quasi-long-range order in which the SG correlation
decays according to a power law [20, 21] like the ferromagnetic (FM) correlation in the
1 This disordered phase is sometimes called ‘the glass phase’ or ‘the vortex glass phase’. However, in this paper, we
call it the SG phase, since they have the same properties.
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Kosterlitz–Thouless (KT) phase [22, 23]. Some numerical simulations supported the latter
case [24–27], while experimental observation [28] and numerical simulations [9, 10, 13, 29, 30]
deny it. In a weakly disordered regime, the instability of the KT phase against small disorder
is suggested by the perturbation expansion and the RG analysis [31, 32], while it is denied
by numerical simulations [4, 9, 25, 33] and other RG analyses [25, 34–37]. There is another
controversy in two dimensions about the existence of a re-entrant transition from the KT phase
to the non-KT one. Earlier works with real space RG analyses suggest re-entrance [1, 2, 38, 39],
however, the analysis has been modified and provides for its absence [34–37]. The same results
are obtained by Monte Carlo simulations [4, 9, 11, 25, 40, 41] and the RG analyses [42, 34].

Since randomness and frustration make it difficult to examine short-range systems
analytically as well as numerically, only a few things have been confirmed definitely in
spite of a large number of studies. Thus, it is highly desirable to have an analytic method for
understanding the thermodynamic and critical behaviour in random spin systems. The method
of gauge transformation is a useful technique to derive analytic results in gauge symmetric
random spin systems [20, 21, 43–48]. It was firstly applied to the Ising SG models [43],
and provides the internal energy and an upper bound on the specific heat exactly as non-
singular functions of the temperature on the Nishimori line in the temperature–randomness
phase diagram. Further, it is proved that the boundary between the FM and non-FM phases
in the temperature lower than the multicritical point (MCP) at which paramagnetic (PM),
FM and SG phases meet and the Nishimori line intersects, is vertical or re-entrant. Using a
model with a modified probability distribution of randomness, the verticality is concluded [44],
which implies the absence of re-entrance: although the theory needs a plausible but unproved
assumption on the thermodynamic behaviour of the modified model, the result is consistent
with other theories and experiments on Ising-like spin glasses [49]. The gauge transformation
has been applied to gauge glasses with various symmetries [20] including the U(1) symmetry,
i.e. the XY gauge glass model. The same results as in the Ising case are derived. The absence
of re-entrance is concluded for any dimensional model with a plausible assumption for the
modified model, if the FM (or KT) phase is stable in the disordered regime. The gauge
transformation is also extended to dynamical systems [45–48]. For the Ising SG case, some
important relations are derived for nonequilibrium auto-correlation functions, order parameter
and energy relaxations. They provide discussions on the absence of re-entrance, the regime
of the mixed phase in the phase diagram, the multi-critical dynamics, and the equivalence of
two nonequilibrium processes in the SG phase.

The dynamics is one of most important aspects in disordered systems because of the
slow relaxation [49, 50]. In the case of standard SG theory, dynamical properties have
been investigated for the mean field model [51], the Griffiths phase in short-range systems
[52–55], the aging phenomenon [56–60] and so on. The aging phenomenon [61] is a typical
realization of slow dynamics, especially for SG materials [62–65]. In contrast to the standard
SG systems, not many studies on the dynamical properties have been performed for gauge
glass systems. It would be helpful for future investigations to present exact results including
dynamical properties.

In this paper, we study the gauge transformation for dynamical systems of the gauge glass
model. In the static case, the gauge symmetric models can be treated in the same manner
as the Ising SG [20]. It is also straightforward to apply the dynamical gauge theory for the
Ising SG [45, 47, 48], in which the stochastic dynamics is treated, to the gauge glass model.
Since the gauge glass system has a continuous spin space, one can consider a deterministic
dynamics with equations of motion, which is also treated in the present theory. Several exact
relations are derived among dynamical quantities such as equilibrium and nonequilibrium
auto-correlation functions, relaxation functions of order parameter and internal energy. Using
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them, we discuss physical properties including aging, multicritical dynamics, dynamics in the
SG, a possible mixed phase and Griffiths phase and the absence of re-entrant transition in two
or higher dimensions.

The organization of the paper is as follows. In section 2, the gauge glass model associated
with the plane rotator is introduced. The probability distribution is chosen so that the system
has the gauge symmetry. The results of the static gauge theory are summarized. In section 3, a
stochastic dynamics is introduced using the master equation formalism, and some dynamical
quantities are defined. The gauge transformation is introduced for this system. Some exact
relations are derived for dynamical quantities. In section 4, physical properties are discussed
by using the exact relations obtained. In section 5, equations of motion are introduced for the
same gauge symmetric system, and the gauge transformation is applied. It is shown that the
same relations can be derived for several choices of dynamics. The last section is devoted to
the summary.

2. Gauge symmetric gauge glass model

The Hamiltonian we consider is

H = J H̃(φ,ω) = −J
∑
〈ij〉

cos(φi − φj + ωij ) (2.1)

where φi, ωij ∈ [−π, π). The set φ = (φ1, φ2, . . . , φN) represents a configuration of total
N spins, and ω represents a configuration of total NB quenched random variables associated
with each bond. The summation of 〈ij 〉 is taken over all bonds; we make no restrictions on
the type or the dimensions of the lattice, whereas one may suppose a usual nearest-neighbour
interaction on the d-dimensional hypercubic lattice. The variable ωij has an odd property;
ωji = −ωij .2 For a particular bond configuration, the thermal equilibrium distribution at
temperature T = J/kBK is given by

ρeq(φ; K,ω) = exp(−KH̃(φ; ω))

Z(K; ω)
. (2.2)

The partition function is defined by

Z(K; ω) =
∫

dφ exp(−KH̃(φ; ω)) (2.3)

where the integration of dφ denotes the multiple integrations for the N spin variables φi . The
probability distribution for randomness is taken as

P(ω; D) =
∏
〈ij〉

exp(D cos ωij )

2πI0(D)
= exp(−DH̃(F; ω))

Y (D)
(2.4)

where F = (0, 0, . . . , 0) represents an all-aligned spin state, In(D) is the modified Bessel
function, and

Y (D) ≡ (2πI0(D))NB . (2.5)

In this distribution, which is central to the present paper (see also figure 2), the variable D

controls the strength of randomness; D = 0 and ∞ correspond to the full random case and
the non-random case, respectively. The random average is denoted by

[· · ·]c =
∫

dωP(ω; D) · · · . (2.6)

2 The sign of ωij in equation (2.1) is not important, since the distribution of ωij (2.4) is an even function.
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The integration of dω denotes the multiple integrations for the NB random variables ωij . In
the following, for simplicity, we will sometimes omit the dependence on spin set φ, bond
set ω, inverse temperature K and/or randomness D from functions defined above, if they are
trivial or unimportant.

The gauge transformations for functions of φ and ω are defined by

Uψ : φi −→ φi − ψi (2.7)

Vψ : ωij −→ ωij + ψi − ψj (2.8)

where ψ = (ψ1, ψ2, . . . , ψN) is an arbitrary state of N spins. Each set of transformations
forms a group. While variables φi and ωij possibly take values out of the domain, [−π, π), in
this transformation, we always identify them with a residue of 2π . The Hamiltonian (2.1) is
invariant under the transformation UψVψ:

UψVψH̃(φ; ω) = H̃(φ; ω). (2.9)

The gauge transformation of the distribution (2.4) is given by

VψP(ω; D) = exp(−DH̃(ψ; ω))

Y (D)
= Z(D; ω)

Y (D)
ρeq(ψ; D,ω) (2.10)

where we note that the spin set in H̃ and the temperature are different from the usual ones.
Another important property in the theory is the invariant integral for φ and ω:∫

dφ · · · =
∫

dφUψ · · · (2.11)

∫
dω · · · =

∫
dω Vψ · · · . (2.12)

Using equations (2.9) and (2.10), one can show [20] that the partition function is gauge
invariant under Vψ,

VψZ(K; ω) = Z(K; ω) (2.13)

providing the invariance of thermal distribution

UψVψ ρeq(φ; K,ω) = ρeq(φ; K,ω). (2.14)

Then, we obtain the gauge invariance of the averaged energy

Vψ〈H̃〉K = 〈H̃〉K. (2.15)

Note that we will use the terminology ‘gauge invariant’ only for functions of ω invariant under
Vψ. Since the lhs of equation (2.12) is independent of ψ, it is convenient to derive another
expression of random average instead of equation (2.6):

[· · ·]c =
∫

dω dψ
Z(D; ω)

(2π)NY (D)
ρeq(ψ; D,ω)Vψ · · · . (2.16)

The random average of gauge invariant function Q(ω) can be expressed as

[Q(ω)]c =
∫

dω
Z(D; ω)

(2π)NY (D)
Q(ω). (2.17)

In three or higher dimensions, the topology of the K–D phase diagram is expected as in
figure 1, where PM, FM and SG phases appear. A possible Griffiths phase is also indicated.
On the line K = D, this phase and the FM phase would be separated by the multicritical point
(MCP) already mentioned. In two dimensions, the KT phase appears instead of the FM phase.
The SG phase disappears or becomes a possible KT-like SG phase. The dashed line K = D

is called the Nishimori line around which the following properties have been found from the
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Figure 1. Typical phase diagram of gauge glass model in the D–K plane (D controls the randomness
and K = J/kBT ). The dashed line K = D is the Nishimori line. The FM phase boundary in
the low temperature region is assumed to be vertical. A possible regime of the Griffiths phase is
indicated.

static gauge theory [20, 46]:

• The energy and the upper bound of the specific heat are expressed by analytic functions
of temperature;

E(D,D) = −J
d

dD
ln Y (D) = −NBJ

I1(D)

I0(D)
(2.18)

C(D,D) � kBD2 d2

dD2
ln Y (D). (2.19)

• The FM and SG order parameters coincide with each other;

m(D,D) = q(D,D). (2.20)

Thus, no SG phase appears on this line, since m = 0 in the SG phase.
• The line is likely to intersect the MCP of PM, FM and SG phases.
• The phase boundary between the FM (or KT) and the SG (or PM) phases below this line

must be vertical to the D-axis or re-entrant to the large D side [20]. A plausible argument
can be made for the verticality.

It is remarked that the probability distribution function (2.4) is different from the
usual Gaussian form, which has been studied in many cases. This is because we need a
gauge symmetric form in the theory, which restricts the distribution function relating to the
Hamiltonian as in equation (2.4). It is shown that the same properties can also be proved for
another gauge symmetric U(1) model, the Villain model [66] with Gaussian random gauge,
in which the local Boltzmann factor is given by

eV (φi−φj +ωij ) =
∞∑

n=−∞
e−K(φi−φj +ωij−2πn)2/2. (2.21)

We consider that physical properties are equivalent in these gauge glass models irrespective
of the detail of distribution P. In fact, as seen in figure 2, the shape of the function (2.4) is
quite similar to the Gaussian. As will be seen later, the present theory can be applied to the
Villain model in the case of the stochastic dynamics in section 3. However, we proceed with
our present theory by the rotator model. It is somehow difficult to apply in the case of the
deterministic dynamics, since the explicit form of the Hamiltonian, which is necessary in the
equations of motion, is not unique.
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Figure 2. The probability distribution function for one bond p(x; D) ≡ exp(D cos x)/(2πI0(D)).

3. Stochastic dynamics

First, we consider the stochastic dynamics following the results of Ising SG [45, 47, 48].

3.1. Master equation

We consider a Markov process for a fixed bond configuration, in which the density of state
evolves with the master equation [67]

d

dt
ρt (φ) =

∫
dφ′{W(φ|φ′)ρt (φ

′) − W(φ′|φ)ρt (φ)}. (3.1)

The transition probability W(φ|φ′) is non-negative and satisfies the condition of the detailed
balance

W(φ|φ′)ρeq(φ
′; K,ω) = W(φ′|φ)ρeq(φ; K,ω) (3.2)

which guarantees the stability of the equilibrium distribution ρeq. Condition (3.2) is
automatically satisfied if one uses the expression with a symmetric matrix w(φ|φ′):

W(φ|φ′) = w(φ|φ′)
ρeq(φ

′)
. (3.3)

The function w(φ|φ′) depends on the details of dynamics considered. As in [45], I assume

w(φ|φ′) = w0δ1[φ,φ′]ρeq(φ)�(�[φ,φ′])ρeq(φ
′)�(�[φ′,φ]) (3.4)

(where �(x) denotes the Heaviside function) for the single-spin-flip Metropolis dynamics
[68], and

w(φ|φ′) = w0

∑
i

δ1i[φ,φ′]ρeq(φ)ρeq(φ
′)∫

dφ′′δ1i[φ′′,φ′]ρeq(φ
′′)

(3.5)

for the single-spin-flip heat-bath dynamics, where

�[φ,φ′] ≡ H̃(φ; ω) − H̃(φ′; ω) (3.6)

is the energy difference of two states

δ1[φ,φ′] ≡
∑

i

δ1i[φ,φ′] (3.7)

δ1i[φ,φ′] ≡
∏
j �=i

δ(φj − φ′
j ) (3.8)
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KD
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Figure 3. Illustrations of two nonequilibrium processes, I and II. Between tw and t + tw, the
correlation is measured.

which are the single spin-flip and the ith spin-flip operators, respectively. Note that the
denominator of the summand in equation (3.5) is unchanged if the variable φ′ in the argument
of δ1i[φ′′,φ′] is replaced by φ providing the symmetry of w(φ|φ′).

Since the diagonal element plays no role in either equation (3.1) or (3.2), one may define
it in such a way as

W(φ|φ′) = w(φ|φ′)
ρeq(φ

′)
− δ(φ − φ′)

∫
dφ′′ w(φ′′|φ)

ρeq(φ)
. (3.9)

Then, the master equation (3.1) is reduced to

d

dt
ρt (φ) =

∫
dφ′W(φ|φ′)ρt (φ

′) (3.10)

and the solution is given by

ρt(φ) =
∫

dφ′〈φ| etW|φ′〉ρ0(φ
′). (3.11)

The function 〈φ| etW|φ′〉 is the integration kernel for time evolution defined by

〈φ| etW|φ′〉 ≡
∞∑

n=0

tn

n!
〈φ|Wn|φ′〉 (3.12)

〈φ|Wn|φ′〉 ≡
∫ (

n−1∏
	=1

dφ(	)

)
n−1∏
k=0

W(φ(k+1)|φ(k)) (3.13)

where φ(n) = φ and φ(0) = φ′. It has been proved that all eigenvalues of the operator W
with (3.2) are real and negative except the zero eigenvalue corresponding to the equilibrium
distribution [67]. Thus, all solutions with any initial conditions tend to the equilibrium
distribution as t → ∞.

3.2. Dynamical processes

We examine two nonequilibrium processes I and II in figure 3. Process I is related to the
zero-field cooling (ZFC). At the initial time t = 0, the system is kept in the equilibrium state
with a temperature D and zero field; hereafter, we use the terminology ‘temperature’ for K
and D instead of ‘inverse temperature’. The temperature is immediately changed (usually
quenched) and the system relaxes in a heat bath with another temperature K with t > 0. The
average for dynamical ensembles in this process is denoted by 〈· · ·〉DK . Process II is related
to the field quench (FQ) [59, 63]. The system starts from an all-aligned state F at t = 0 and
relaxes in the same heat bath as in process I with t > 0; the average is denoted by 〈· · ·〉F

K .
Since the all-aligned state provides the strong-field limit, this represents the process with a
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field quenched from ∞ to zero at t = 0. Note that the FQ is not equivalent to the field cooling
in which the applied field is weaker and is quenched after waiting.

We define the waiting-time dependence of nonequilibrium auto-correlation functions
[59, 60] for processes I and II. In the language of the master equation, that for process I is
expressed as

〈eiφi(t+tw)−iφi(tw)〉DK =
∫

dφ dφ′ dφ0〈φ| etW|φ′〉〈φ′| etwW|φ0〉ρeq(φ0; D) eiφi−iφ ′
i . (3.14)

When K = D, the average 〈· · ·〉DD represents the dynamical average in the equilibrium process
〈· · ·〉eq

D . In this case, the auto-correlation function (3.14) becomes independent of tw since the
thermal distribution ρeq(φ; K,ω) is an eigenfunction of W(φ′|φ), i.e.

〈eiφi(t+tw)−iφi(tw)〉DD = 〈eiφi (t)−iφi(0)〉eq
D

=
∫

dφ dφ′〈φ| etW|φ′〉ρeq (φ′; K) eiφi−iφ ′
i . (3.15)

If one defines an auto-correlation function for the process relaxed from a fixed state ψ—let us
call this process II′—

〈eiφi(t+tw)−iφi(tw)〉ψK =
∫

dφ dφ′〈φ| etW|φ′〉〈φ′| etwW|ψ〉 eiφi−iφ ′
i (3.16)

that for process II is expressed as 〈eiφi (t+tw)−iφi(tw)〉F
K , and equation (3.14) is rewritten as

〈eiφi(t+tw)−iφi(tw)〉DK =
∫

dψ ρeq(ψ; D)〈eiφi (t+tw)−iφi(tw)〉ψK. (3.17)

In the long-time limit (t → ∞), the thermodynamic limit of
[〈eiφi (t)−iφi(0)〉eq

K

]
c converges to

the SG order parameter qEA, which is non-vanishing in FM or SG phases [49, 50]. If one sets
tw = 0, equation (3.16) with ψ = F becomes

〈eiφi(t)〉F
K =

∫
dφ〈φ| etW|F〉 eiφi (3.18)

which is the FM order parameter at time t relaxed from the complete FM state, F, at t = 0.
When t → ∞, the thermodynamic limit of

[〈eiφi(t)〉F
K

]
c approaches the spontaneous ordering.

Note that all quantities defined above containing the exponential eiφi have real values in the
average because of the spin–flip symmetry, φi → φi + π , for the Hamiltonian and the matrix
W(φ|φ′).

Other relaxation functions, the nonequilibrium relaxations of exchange energy, are defined
as

〈H(t)〉DK = J

∫
dφ dφ′〈φ| etW|φ′〉ρeq(φ

′; D,ω)H̃(φ; ω) (3.19)

〈H(t)〉F
K = J

∫
dφ〈φ| etW|F〉H̃(φ; ω). (3.20)

3.3. Gauge transformation

Let us examine the gauge transformation of the functions defined above. We introduce the
transformation for φ′:

U ′
ψ : φ′

i −→ φ′
i − ψi (3.21)

to show the invariance

UψU ′
ψVψ〈φ| etW|φ′〉 = 〈φ| etW|φ′〉. (3.22)
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From equations (2.9)–(2.13), it is easy to see that ρeq(φ; K,ω), δ1i[φ,φ′] and �[φ,φ′] are
invariant under UψU ′

ψVψ. This yields the invariance

UψU ′
ψVψw(φ|φ′) = w(φ|φ′) (3.23)

in the case of the Metropolis (3.4) and the heat-bath dynamics (3.5). It is natural to restrict the
dynamics in such a way as equation (3.23) holds. This yields the invariance

UψU ′
ψVψW(φ|φ′) = W(φ|φ′) (3.24)

where the invariant integral for φ′′ like equation (2.11) is necessary to derive the case φ = φ′.
Let us consider term by term in the expansion of 〈φ| etW|φ′〉, equation (3.13). Similarly to φ

and φ′, the gauge transformations for φ(k)(k = 1, 2, . . . , n − 1) are introduced as

U
(k)

ψ : φ
(k)

i −→ φ
(k)

i − ψi. (3.25)

Then, equation (3.24) with the invariant integral for φ(k) like (2.11) leads to

UψU ′
ψVψ〈φ|Wn|φ′〉 =

∫ (
n−1∏
	=1

dφ(	) U
(	)
ψ

)
UψU ′

ψVψ

n−1∏
k=0

W(φ(k+1)|φ(k))

=
∫ (

n−1∏
	=1

dφ(	)

)
n−1∏
k=0

W(φ(k+1)|φ(k)) (3.26)

providing the invariance (3.22).
From equations (2.14) and (3.22) with the invariant integral (2.11) taken into account, one

can show that the auto-correlation function for process I is gauge invariant as

Vψ〈eiφi(t)−iφi (0)〉eq
K = 〈eiφi (t)−iφi(0)〉eq

K (3.27)

Vψ〈eiφi(t+tw)−iφi (tw)〉DK = 〈eiφi (t+tw)−iφi(tw)〉DK (3.28)

while that for process II is transformed as

Vψ〈eiφi(t+tw)−iφi (tw)〉F
K =

∫
dφ dφ′UψU ′

ψVψ〈φ| etW|φ′〉〈φ′| etwW|F〉 eiφi−iφ ′
i

= 〈eiφi(t+tw)−iφi(tw)〉ψK (3.29)

where we use the invariant integral (3.11), and

UψVψ〈φ| etW|φ′〉 = U ′
−ψ〈φ| etW|φ′〉 = 〈φ| etW|φ′ + ψ〉 (3.30)

obtained from equation (3.22). The variables −ψ and φ′ + ψ represent the spin states, (−ψ1,

−ψ2, . . . ,−ψN) and (φ′
1 + ψ1, φ

′
2 + ψ2, . . . , φ

′
N + ψN), respectively. Using equations (2.16),

(3.17) and (3.29), we derive[〈eiφi (t+tw)−iφi(tw)〉F
K

]
c =

∫
dω

Z(D; ω)

(2π)NY (D)
〈eiφi(t+tw)−iφi(tw)〉DK. (3.31)

Because of the gauge invariance (3.28), equation (3.31) is rewritten by equation (2.17) as[〈eiφi (t+tw)−iφi(tw)〉F
K

]
c = [〈eiφi(t+tw)−iφi (tw)〉DK

]
c (3.32)

for any waiting time tw, time interval t, temperature K and degree of randomness D. We call
it the ‘aging relation’, since it relates the aging phenomena in two distinct processes whatever
waiting-time dependence is essential for the aging. From the invariance (2.9), a similar relation
can be derived for the energy defined in equations (3.19) and (3.20):[〈H(t)〉F

K

]
c = [〈H(t)〉DK

]
c . (3.33)
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4. Physical properties

The aging relation (3.32) and equation (3.33) include parameters K and D characterizing the
relaxation in t > 0. For each phase, one can examine the physical meaning of the relation by
choosing (K,D) appropriately. Note that the initial temperature of process I is always located
on K = D.

4.1. Dynamics in the SG phase

First, let us consider the region with sufficiently strong randomness (small D) and sufficiently
low temperatures (large K), where the SG phase appears if it exists. In such a region,
D indicates a high temperature (small D), and the relaxations

[〈eiφi(t+tw)−iφi(tw)〉DK
]

c and[〈H(t)〉DK
]

c for process I describe a ZFC process (cooled immediately from a high temperature
with D). On the other hand,

[〈eiφi(t+tw)−iφi(tw)〉F
K

]
c and

[〈H(t)〉F
K

]
c for process II are regarded as

the relaxations in an FQ process (demagnetization from the strong field limit). Thus, relations
(3.32) and (3.33) imply the equivalence of the dynamics especially the aging phenomenon in
the ZFC and FQ processes. The same relation was pointed out in real SG materials [63, 65].
At a glance, this relation expresses a trivial fact, since both initial states are located in the PM
phase and both systems relax into the SG phase. However, the equivalence at any waiting
time, which means the equivalence of the dynamical structure at any stage of relaxation, is
non-trivial.

In the case of sufficiently weak randomness (large D), the initial states of both
nonequilibrium processes represent almost the same spin state (complete FM state). Then,
equations (3.32) and (3.33) show a proper phenomenon.

4.2. Dynamics on K = D

Next, we examine the dynamics on the line K = D, where the dynamical average 〈· · ·〉DK
becomes the average in the equilibrium process 〈· · ·〉eq

D . From equations (3.15) and (3.32), we
derive [〈eiφi (t+tw)−iφi(tw)〉F

D

]
c = [〈eiφi (t)−iφi(0)〉eq

D

]
c . (4.1)

If one sets tw = 0, equation (4.1) yields[〈eiφi (t)〉F
D

]
c = [〈eiφi (t)−iφi(0)〉eq

D

]
c (4.2)

which implies the equivalence of FM and SG orderings (if one takes the limit of t → ∞). Since,
in the SG phase, the SG order remains finite whereas the FM order disappears, equation (4.2)
indicates the absence of the SG phase on the line K = D as in the analysis of the static
orderings (2.20) [20].

Equations (4.1) and (4.2) also imply the equivalence of the equilibrium and nonequilibrium
relaxations. The internal energy of the initial state F is identical to that on K = D, which
is equal to the equilibrium energy on K = D (2.18) [20]. It is easy to see that the rhs of
equation (3.33) is independent of time t if K = D:[〈H(t)〉F

D

]
c = −NBJ

I1(D)

I0(D)
. (4.3)

Since the equilibrium energy is an increasing function of the temperature, we expect that[〈H(t)〉F
K

]
c is an increasing function of t above K = D and a decreasing function below it.

As seen from equations (4.1) and (4.2), the auto-correlation function in the FQ process
is independent of the waiting time, which suggests the absence of aging on K = D. In the
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region below the MCP on K = D, where the spontaneous ordering appears, it is not clear that
the FQ process is appropriate for the observation of the aging, since the initial all-aligned state
is not so different from the final equilibrium state with broken symmetry. While the rotational
symmetry is initially broken in the FQ process, the dynamical behaviour is equivalent to that
in the equilibrium (symmetric) process—see equation (4.1). Thus, we assume that the FQ
process exhibits an aging feature even in such a symmetry-broken region.

4.3. Mixed phase and Griffiths phase

Aging has been considered an inherent property in the SG phase from experimental [62–65]
and theoretical [56–60] viewpoints. Since the aging phenomenon is a typical observation of
the complex phase space for slow dynamics, it could occur in other complex phases. In such
a phase, aging would also be inherent, which means that it occurs in the whole of the phase
when it is observed in some parts of the phase.

Following the results of the SK model and experimental observations [49] for the SG
phenomenon, one may consider a possibility of a mixed phase between the FM and SG phases
even in the gauge glass systems. It is natural to consider that aging occurs in the mixed phase,
since the SG feature in the mixed phase provides typical slow dynamics which reveals aging.
If aging is inherent in the mixed phase, this indicates that the line K = D does not enter the
mixed phase. This restricts the topology of the phase diagram: it must appear below K = D

if it even exists.
In the Ising SG systems, it has also been pointed out that there exists a dynamically

singular phase called the Griffiths phase [69] between the critical temperature of the pure
system and the phase boundary of the low temperature phase (the FM or the SG) [52–55]—see
figure 1. The possibility of the Griffiths phase has not yet been discussed much in the gauge
glass systems. Figure 1 is proposed just following an analogy with the dilute ferromagnet
[69]. Concerning the Griffiths phase, two cases can be considered to understand the present
result if aging is an inherent property: (a) There is no aging in the whole of the Griffiths
phase, if the line K = D intersects the Griffiths phase as in figure 1. (b) There is no Griffiths
phase at least around K = D. In the former case, even if slow dynamics is observed in the
Griffiths phase, it is quite different from that in the SG phase [70]. The latter case allows
the existence of the Griffiths phase below K = D. Another possibility is that (c) the aging
is not inherent at least in the Griffiths phase. This means that aging occurs in some parts of
the phase. Although it is not obvious which is correct in the present framework, the above
result restricts the existence of the aging phenomenon and the region of the Griffiths phase,
and supports their future investigation.

4.4. Multicritical dynamics

Let us consider the critical relaxation at the MCP. At the FM critical point, in general, the FM
order parameter decays in a power law asymptotically as

m(t) ≡ [〈eiφi(t)〉F
K

]
c ∼ t−λm . (4.4)

Then, the dynamic scaling hypothesis [71]

m(t, ε, L) = L−β/νm̄(L1/νε, L−zt) ε = (Kc − K)/Kc (4.5)

reveals the relation of exponents

λm = β

zν
. (4.6)
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On the other hand, the equilibrium auto-correlation function decays in a power law as

q(t) ≡ [〈eiφi (t)−iφi(0)〉eq
K

]
c ∼ t−λq (4.7)

at both FM and SG critical points. At the FM critical point, the exponent λq is associated with
the FM criticality; a similar dynamic scaling reveals

λq = 2β

zν
. (4.8)

Thus, λm and λq are twice different in the FM case. At the SG critical point, it is associated
with the SG criticality; the dynamic scaling hypothesis for the SG ordering

q(t, ε, L) = L−β̃/ν̃ q̄(L1/ν̃ε, L−z̃t) (4.9)

where tilde exponents are those for SG ordering, yields

λq = β̃

z̃ν̃
. (4.10)

The scaling field is not unique in the random case. One can define another scaling form
instead of (4.5) with another scaling field such as (Dc −D)/Dc. At the MCP, the scaling field
ε can be chosen both as ε = (Dc −D)/Dc and as ε = (Kc −K)/Kc since they are of the same
order around the MCP on K = D. Note that critical exponents β and ν depend on the way
of approaching the critical point. Thus, they are defined along K = D in equations (4.5) and
(4.6) for the MCP case. On the other hand, the ratio β/ν and the exponent z are independent
of the scaling field but depend on the critical point itself. On K = D, we have derived the
relation (4.2). This gives

L−β/νm̄(L1/νε, L−zt) = L−β̃/ν̃ q̄(L1/ν̃ε, L−z̃ t) (4.11)

for any L, t and ε (K or D) providing

λm = λq (4.12)

z = z̃ (4.13)

β/ν = β̃/ν̃. (4.14)

Note that the line K = D does not enter the SG phase but just touches it at the MCP [20].
The dynamical exponent z̃ and the ratio β̃/ν̃ are independent of the way of approaching the
criticality, and characterized by the criticality itself. Therefore, exponents z̃ and β̃/ν̃ are
associated with the SG ordering at the MCP. Equations (4.12)–(4.14) relate exponents of FM
ordering and SG ordering at the MCP. The relations for FM dynamic exponents, (4.6) and
(4.8), would keep along the phase boundary from the pure case up to the MCP in figure 1, and
so does the relation for SG ones (4.10) from D = 0 up to the MCP; it is not clear whether the
values of exponents are universal or not.

4.5. Absence of re-entrance

Here, we discuss the asymptotic behaviour of the auto-correlation function for process I with
tw = 0,

[〈eiφi (t)−iφi(0)〉DK
]

c, which satisfies[〈eiφi (t)〉F
D

]
c = [〈eiφi (t)−iφi(0)〉DK

]
c (4.15)

to show the absence of re-entrant transition, i.e. the verticality of the FM boundary. We present
the following two propositions for it. Since the long-time limit of this function is expected to
behave as a kind of order parameter, (i) the asymptotic behaviour should be prescribed by both
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phases where the initial point (D,D) and the final point (K,D) are located. In the appendix,
we mention that the average of the gauge invariant function cannot detect the FM boundary.
Because of the gauge invariance (3.27), (ii) the asymptotic behaviour is independent of whether
(D,D) and (K,D) are FM or not. From this point of view, the behaviour of

[〈eiφi (t)−iφi(0)〉DK
]

c
can change only when (D,D) or (K,D) intersects the PM boundary. On the other hand, it
approaches an FM order parameter because of equation (4.15), implying that the asymptotic
behaviour changes depending on if (K,D) is FM or not. At a glance, this contradicts (ii) on
the FM boundary below the PM boundary. However, they are not in conflict with each other if
the line K = D intersects the MCP and the FM phase boundary is vertical in the temperature
below it. In this case, when (K,D) is located on the FM boundary, (D,D) is located on the
PM boundary simultaneously (i.e. the MCP).

In two dimensions, the same argument can be made if one considers the asymptotic decay
of relaxation functions as an order parameter for the KT phase instead of the long time limit
of them. The order parameter relaxation

[〈eiφi (t)〉F
K

]
c decays exponentially in the PM phase

while it decays algebraically in the KT phase. Thus, the above argument is recognized as the
statement that the KT boundary is vertical below the MCP.

5. Deterministic dynamics

In section 3, we treat the stochastic dynamics obeying the master equation with continuous
time (3.1). The results can also be applied to the discrete time interval case, which is used
in Monte Carlo simulations. Since the spin variable is continuous in the gauge glass model,
one can define equations of motion. In this section, we discuss the case of the deterministic
dynamics such as in molecular dynamics simulations.

It is noted that the essential features for a physical quantity Q to derive relations such as
(3.32) and (3.33) are the gauge invariance

Vψ〈Q〉DK = 〈Q〉DK (5.1)

for process I as equation (3.28), and the transformation rule

Vψ〈Q〉F
K = 〈Q〉ψK (5.2)

for process II as equation (3.29). By the use of equations (2.16) and (2.17), they reveal the
relation [〈Q〉F

K

]
c = [〈Q〉DK

]
c (5.3)

irrespective of the detail of dynamics.

5.1. Microcanonical dynamics

Let us introduce a conjugate momentum Li for each spin variable φi and consider the total
Hamiltonian Htot = J H̃tot(L,φ,ω) including the kinetic energy

H̃tot(L,φ,ω) = −
∑
〈ij〉

cos(φi − φj + ωij ) +
1

2

∑
i

L2
i . (5.4)

The thermal distribution for this system is given by

exp(−KH̃tot(L,φ,ω))

Ztot(K; ω)
= µeq(L; K)ρeq(φ; K,ω) (5.5)

where the partition function of Htot is defined by

Ztot(K; ω) =
∫

dL dφ exp(−KH̃tot(L,φ,ω)). (5.6)
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The integration of dL denotes multiple integrations for N momentum variables. For the spin
variable, the thermal distribution of Htot is identical with that in the static case (2.2). The
function µeq(L; K) is the thermal distribution for momentum variables

µeq(L; K) ≡
(

K

2π

)N/2

exp

(
−K

2

∑
i

L2
i

)
. (5.7)

The equations of motion for φi and Li are given by the canonical equations of Hamilton

∂Li

∂t
= − ∂

∂φi

Htot = −J
∑
(j∈i)

sin(φi − φj + ωij ) (5.8a)

∂φi

∂t
= ∂

∂Li

Htot = JLi (5.8b)

where the summation of (j ∈ i) takes for all sites coupled with the i site.
Note that the conjugate momentum Li , differential operators ∂

∂Li
and ∂

∂φi
are invariant

under gauge transformations Uψ and Vψ. Thus, the canonical equations (5.8a) and (5.8b) are
also invariant under the gauge transformation UψVψ. This means that if (L̄(t), φ̄(t)) represents
the solution for a bond configuration ω with an initial condition (L0,φ0), the solution for the
bond configuration Vψω with the initial condition (L0,φ0 −ψ) is given by ((L̄(t), φ̄(t)−ψ).
This implies the transformation rules

U ′
ψVψφ̄i (t; L0,φ0,ω) = φ̄i (t; L0, φ0,ω) − ψi (5.9a)

U ′
ψVψL̄i(t; L0,φ0,ω) = L̄i(t; L0,φ0,ω) (5.9b)

where U ′
ψ is the transformation operated to φ0. It is remarked that once the transformation for

φ0 is operated, it affects φ(t) at any time, since the solution is continuous in time. Thus, the
operation U ′

ψVψ in equations (5.9a) and (5.9b) can be recognized as UψU ′
ψVψ in the stochastic

dynamics.
Let us define dynamical averages such as equations (3.14)–(3.16). Since the dynamics

is deterministic, the dynamical average is performed by the average over the initial condition
(L0,φ0). When the initial distribution is in equilibrium, the temperature is unchanged since
the total energy is conserved. The equilibrium dynamics with temperature K, 〈· · ·〉eq

K = 〈· · ·〉KK ,
is defined as

〈· · ·〉eq
K =

∫
dL0 dφ0 µeq(L0; K)ρeq(φ0; K,ω) · · · . (5.10)

Although the dynamics contains no dissipative factor in this formulation, we assume that the
system shows a relaxation to an orbit which traces the thermal distribution when one prepares
an appropriate nonequilibrium initial distribution ρ0(L0,φ0). This is related to the ergodic
theorem. There are several ways to determine ρ0(L0,φ0). One of the simplest ways is to fix
the total energy to the equilibrium value at the final temperature. In process I, 〈· · ·〉DK , the
initial distribution for spin variables is the thermal distribution with temperature D. The total
energy is identical to the equilibrium value at temperature K providing

ρI(L0,φ0; K,D,ω) = ρeq(φ0; D,ω)

�I(K,D,ω)
δ(H̃tot(L0,φ0,ω) − 〈H̃tot〉K) (5.11)

where 〈H̃tot〉K = N/2K + 〈H̃〉K , and

�I(K,D,ω) =
∫

dL0 dφ0 ρeq(φ0; D,ω)δ(H̃tot(L0,φ0,ω) − 〈H̃tot〉K) (5.12)
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is the volume of the phase space in process I. When K = D, the dynamical average with ρI

becomes identical with (5.10), because of the equivalence of the canonical and microcanonical
ensembles in large enough systems. Similarly, the initial distribution for process II′ is given
by

ρψ(L0,φ0; K,ω) = δ(φ0 − ψ)

�ψ(K,ω)
δ(H̃tot(L0,φ0,ω) − 〈H̃tot〉K). (5.13)

where

�ψ(K,ω) =
∫

dL0 dφ0 δ(φ0 − ψ)δ(H̃tot(L0,φ0,ω) − 〈H̃tot〉K) (5.14)

is the volume of the phase space in this process. Using these initial distributions, we define
the correlation functions for processes I and II:

〈eiφi(t+tw)−iφi(tw)〉DK =
∫

dL0 dφ0 ρI(L0,φ0; K,D,ω) eiφ̄i (t+tw;L0,φ0,ω)−iφ̄i (tw;L0,φ0,ω) (5.15)

〈eiφi(t+tw)−iφi(tw)〉F
K =

∫
dL0 dφ0 ρF(L0,φ0; K,ω) eiφ̄i (t+tw;L0,φ0,ω)−iφ̄i (tw;L0,φ0,ω). (5.16)

The dynamical averages for the energy are also defined in a similar way.
Noting the invariance (2.14)–(2.15), the function ρI(L0,φ0; K,D,ω) is invariant under

the gauge transformation U ′
ψVψ:

U ′
ψVψρI(L0,φ0; K,D,ω) = ρI(L0,φ0; K,D,ω). (5.17)

This reveals the gauge invariance of 〈eiφi(t+tw)−iφi(tw)〉DK for process I as in the stochastic
dynamics case (3.28). On the other hand, the transformation for ρF gives

U ′
ψVψρF(L0,φ0; K,ω) = ρψ(L0,φ0; K,ω) (5.18)

which reveals the transformation rule for process II

Vψ〈eiφi(t+tw)−iφi(tw)〉F
K =

∫
dL0 dφ0 ρψ(L0,φ0; K,ω) eiφ̄i (t+tw;L0,φ0,ω)−iφ̄i (tw;L0,φ0,ω)

= 〈eiφi(t+tw)−iφi(tw)〉ψK. (5.19)

Thus, from equations (5.1)–(5.3), equation (5.19) yields equation (3.31) providing the aging
relation (3.32). It is easy to see that equation (3.33) also holds.

5.2. Liouville equation

To compare the formulations in stochastic and deterministic dynamics discussed above, it is
instructive to consider the classical Liouville equation which describes the time evolution of
distribution function ρt under the canonical equations (5.8a) and (5.8b):

dρt

dt
=

∑
i

{
∂Htot

∂Li

∂ρt

∂φi

− ∂Htot

∂φi

∂ρt

∂Li

}
. (5.20)

If we define the solution of equation (5.20) for the initial condition ρ = δ(L − L0)δ(φ − φ0)

as G(t, L,φ; L0,φ0,ω), this is nothing but a delta function

G(t, L,φ; L0,φ0,ω) = δ(L − L̄(t; L0,φ0,ω))δ(φ − φ̄(t; L0,φ0,ω)) (5.21)

since the orbit is deterministic. The function G is called the Green function, and the solution
for any initial distribution ρ0(L,φ) is given by

ρt(L,φ; ω, [ρ0]) =
∫

dL0 dφ0G(t, L,φ; L0,φ0,ω)ρ0(L0,φ0) (5.22)

where ρt is a functional of the initial distribution indicated in the arguments as [ρ0].
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The Green function G plays a similar role with 〈φ| etW|φ′〉 in the stochastic dynamics. It
is easy to see that equations (5.9a), (5.9b) and (5.21) yield the invariance

UψU ′
ψVψG(t, L,φ; L0,φ0,ω) = G(t, L,φ; L0,φ0,ω) (5.23)

which is the same relation as equation (3.22). Since the differential operators and Htot is
invariant under UψVψ, when the function ρt is the solution of equation (5.20) with an initial
condition ρ0, the function UψVψρt is also the solution with the initial condition Uψρ0: it is
easily confirmed from equation (5.22) that

UψVψρt (L,φ; ω, [ρ0]) = ρt (L,φ; ω, [Uψρ0]). (5.24)

Using the definitions above with the Green function, the auto-correlation functions are
expressed as

〈eiφi(t+tw)−iφi(tw)〉DK =
∫

dL dφ dL′ dφ′ dL0 dφ0G(t, L,φ; L′,φ′,ω)

× G(tw, L′,φ′; L0,φ0,ω)ρI(L0,φ0; K,D,ω) eiφi−iφ ′
i (5.25)

for process I, and

〈eiφi(t+tw)−iφi(tw)〉F
K =

∫
dL dφ dL′ dφ′ dL0 dφ0G(t, L,φ; L′,φ′,ω)

× G(tw, L′,φ′; L0,φ0,ω)ρF(L0,φ0; K,ω) eiφi−iφ ′
i . (5.26)

for process II. They are equivalent with equations (5.15) and (5.16). From invariance (5.23)
and (5.17) with equation (2.11), one finds that 〈eiφi(t+tw)−iφi (tw)〉DK is gauge invariant and the
other one obeys

Vψ〈eiφi(t+tw)−iφi(tw)〉F
K =

∫
dL dφ dL′ dφ′ dL0 dφ0G(t, L,φ; L′,φ′,ω)

× G(tw, L′,φ′; L0,φ0,ω)ρψ(L0,φ0; K,ω) eiφi−iφ ′
i . (5.27)

Thus, from equations (5.1)–(5.3), this yields equation (3.31) providing the aging relation
(3.32).

5.3. Canonical initial distribution

Another way of defining the initial distributions instead of (5.11) and (5.13) is given by the
canonical ensemble. In both processes, the initial distribution is determined so that the total
energy distributes in terms of the thermal distribution with temperature K:∫

dL0 dφ0 ρ0(L0,φ0)δ(E − Htot(L0,φ0,ω)) = Dtot(E; ω) e−KE/J

Ztot(K; ω)
. (5.28)

where Dtot(E; ω) is the density of state

Dtot(E; ω) =
∫

dL0 dφ0 δ(E − Htot). (5.29)

For process I, ρ0 has the form

ρI(L0,φ0) = µI(L0,φ0; K,D,ω)ρeq(φ0; D,ω). (5.30)

Equation (5.28) implicitly defines the function µI(L0,φ0; K,D,ω) depending on K,D and
ω. For the case K = D, µI = µeq(L0; D) satisfies equation (5.28). For process II′, ρ0 has the
form

ρψ(L0,φ0) = µψ(L0,φ0; K,ω)δ(φ0 − ψ). (5.31)

Equation (5.28) implicitly defines the function µψ(L0,φ0; K,ω) depending on K and ω.
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Noting the invariance (2.9), (2.13) and (2.14) with the invariant integral (2.11), one finds
that, if ρ0(L0,φ0) satisfies equation (5.28), so does U ′

ψVψρ0(L0,φ0). Since U ′
ψVψµI instead

of µI satisfies the same equation as (5.28) with (5.30), the function ρI(L0,φ0) is invariant
under U ′

ψVψ. This reveals the gauge invariance of 〈eiφi(t+tw)−iφi(tw)〉DK for process I. On the
other hand, if ρF(L0,φ0) satisfies equation (5.28) for process II, so does

U ′
ψVψρF(L0,φ0) = [U ′

ψVψµF(L0,φ0; K,ω)]δ(φ0 − ψ). (5.32)

This means

U ′
ψVψρF(L0,φ0; K,ω) = ρψ(L0,φ0; K,ω). (5.33)

Therefore one can derive the transformation rules such as (5.19) providing (3.31) and the aging
relation (3.32) for the canonical case.

5.4. Extended system

In the above, we have defined relaxation processes in conservative dynamics with gauge
symmetry. Here we consider another deterministic dynamics, which keeps the temperature
constant [72, 73]. It is called the extended system dynamics.

In addition to the momentum variables, we introduce a single degree of freedom, the
daemon, which couples to the original system. It will act as a heat bath for the original system
and convert the dynamics as a fixed temperature one. Let the variabley be the daemon and 	 the
conjugate momentum of it. The Hamiltonian of the extended system Hext = J H̃ext(L̃, φ̃,ω)

is defined by

H̃ext(L̃, φ̃,ω) = −
∑
〈ij〉

cos(φi − φj + ωij ) +
1

2y2

∑
i

L2
i +

	2

2
+

(N + 1)

K
ln y (5.34)

where φ̃ represents the set of spin variables φ including the daemon y, and L̃ represents the
set of momentum variables L including 	. Note that the temperature K is explicitly included
in Hext. The canonical equations are given by

∂Li

∂t
= −J

∑
(j∈i)

sin(φi − φj + ωij ) (5.35a)

∂φi

∂t
= JLi/y

2 (5.35b)

∂	

∂t
= J

(∑
i

L2
i

/
y2 − (N + 1)/K

)/
y (5.35c)

∂y

∂t
= J	. (5.35d )

It is known that the microcanonical ensemble of Hext with the total energy E becomes the
canonical ensemble of Htot with temperature K irrespective of E when one traces out the
daemon variables y and 	. This means that the solution of the equations with an arbitrary
initial condition shows a relaxation to an orbit which traces the equilibrium distribution with
temperature K, if one assumes the ergodic theorem.

In this system, the dynamical averages are given by

〈· · ·〉DK =
∫

dL̃0 dφ̃0 µ(L0, 	, y)ρeq(φ0; D,ω) · · · (5.36)
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for process I and

〈· · ·〉F
K =

∫
dL̃0 dφ̃0 µ(L0, 	, y)δ(φ0 − F) · · · (5.37)

for process II, where the integrations of dL̃0 and dφ̃0 denote the multiple integrations for N +1
momentum variables including the daemon’s 	 and those for N + 1 spin variables including
y, respectively. As stated above, the initial distribution function µ(L0, 	, y) for L, 	 and y

can be chosen arbitrarily. We assume that µ(L0, 	, y) is independent of ω so that it is gauge
invariant. It is natural to consider that the daemon variables y and 	 are invariant under the
gauge transformation UψVψ. Thus, the canonical equations (5.35) are also invariant under the
transformation, which reveals a transformation rule like (5.9):

U ′
ψVψφ̄i (t; L̃0, φ̃0,ω) = φ̄i (t; L̃0, φ̃0,ω) − ψi. (5.38)

Following the previous subsection, one can show the gauge invariance of 〈eiφi(t+tw)−iφi(tw)〉DK
for process I and the transformation rule such as (5.19) for process II providing (3.31) and the
aging relation (3.32) for the extended system.

6. Summary

We have applied the gauge transformation to dynamical systems of the gauge glass. The
stochastic dynamics with the master equation formalism (3.1) as well as the deterministic one
with the canonical equations of Hamilton are treated. For the deterministic case, we consider
standard equations of motion with no dissipative factor ((5.8a) and (5.8b)), in which one
realizes relaxation processes to choose appropriate initial distributions. Both microcanonical
and canonical ensembles are considered for the initial distribution. Further, we consider
the extended system dynamics ((5.35a)–(5.35d )) in which the temperature is fixed. In this
dynamics, a single degree of freedom is introduced, which is called the daemon and plays
the role of a heat bath. For all dynamics, we show the theory of gauge transformation in a
coherent manner.

The dynamical relations (3.32) and (3.33) are derived exactly for all dynamics. The
equivalence of nonequilibrium relaxations in the SG phase has been shown between the ZFC
and FQ processes. The waiting-time dependence, which is typical for the aging phenomenon,
coincides for ZFC and FQ processes. On the line K = D, we have found that the equilibrium
relaxation coincides with the nonequilibrium one from the strong field limit. This indicates the
absence of aging providing the restrictions for the regime of possible mixed phase and Griffiths
phase. The exact relations for critical exponents are found at the MCP on this line. Further,
we have confirmed the verticality of the FM phase boundary or equivalently the absence of
the re-entrant transition.

In contrast to the standard SG systems, not many studies on the dynamical properties
have been performed for gauge glass systems. The present results would be helpful for future
investigations including dynamics.
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Appendix. Modified model

The modified model [20, 44] is useful to consider the qualitative behaviours of physical
quantities and the topology of the phase diagram. The Hamiltonian is identical with the
original model. The distribution of randomness, including a fixed constant a, is modified from
the original model (a = 0 case),

Pa(ω; D) ≡ P(ω; D + a)
Y (D + a)Z(D; ω)

Y (D)Z(D + a; ω)
. (A1)

The random average in the modified model with a is denoted by

{· · ·}ac ≡
∫

dωPa(ω; D) · · · . (A2)

It is shown [20] that the average of any gauge invariant quantity is independent of a, i.e.

{Q(ω)}ac = [Q(ω)]c. (A3)

In this appendix, we summarize the properties of the modified model obtained previously.
Analysing the FM and SG order parameters defined from the static FM and SG correlation
functions,

ma(K,D)2 ≡ lim
Rij→∞

∣∣{〈eiφi−iφj 〉K }ac
∣∣ (A4)

qa(K,D)2 ≡ lim
Rij→∞

{|〈eiφi−iφj 〉K |2}a

c (A5)

the following properties have been found exactly for the model with a:

• The PM boundary, at which the edge of qa = 0 is located, is unchanged with a.
• The ordered phase on K = D + a must be the FM phase, since ma = qa holds on it.
• The line K = D + a is likely to intersects the MCP.
• The FM boundary below K = D + a is vertical or re-entrant. Further, verticality can

be shown if the ordered phase between the line K = D + a and the non-random case
(D = ∞) is always FM for the modified model with any a; this assumption is quite
plausible since both sides exhibit only PM–FM transition.

These properties are identical to those for the original model (a = 0). In two dimensions, one
can treat KT transitions in the same way by analysing the correlation length for FM and SG
orderings

ξa(K,D) ≡ lim
Rij →∞

∣∣∣∣ ∂

∂Rij

ln
∣∣∣{〈eiφi−iφj 〉K

}a

c

∣∣∣
∣∣∣∣
−1

(A6)

ξ̃ a(K,D) ≡ lim
Rij →∞

∣∣∣∣ ∂

∂Rij

ln
{∣∣〈eiφi−iφj 〉K

∣∣2
}a

c

∣∣∣∣
−1

(A7)

instead of order parameters (A4) and (A5).
Since the FM correlation function as well as the FM and KT order parameters

equations (A4) and (A6) are not gauge invariant, the FM (KT) boundary changes with a:
at least on K = D + a, the FM (KT) regime changes with a. Thus, the qualitative behaviour
of averaged gauge invariant quantities at (K,D) should not be influenced by the fact whether
(K,D) is FM (KT) or not. In other words, any gauge invariant quantity cannot be an order
parameter for the FM (KT) phase in modified models including the original one (a = 0).
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